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ABSTRACT 
Automatic Incident Detection (AID) algorithms are an integral component of incident management systems. 
Consequently, several incident management algorithms have been developed to respond to this need. 
However, none of these available AID algorithms has proven to be superior or dominant in all situations. 
Consequently, agencies that are contemplating to incorporate an AID algorithm as part of their Freeway 
Traffic Management System (FTMS) are faced with the difficult task of selecting the most appropriate 
algorithm for their situation. 

The literature describes numerous off-line and on-line evaluation tests of current state-of-the-art AID 
algorithms. However, because these AID evaluation studies were conducted on different traffic network 
configurations for different incident scenarios and different traffic demands, a rigorous objective comparison 
of the various AID algorithms is very difficult. Consequently, there appears to be an urgent need for a 
standard testbed that can easily be utilised to evaluate and compare various AID algorithms. 

This paper describes how a testbed that is composed of field and simulated data. The field data consists of 
168 hours of 20-second data, including 26 incidents, while the simulated data consists of 60 hours of 20-
second data including 75 incidents. The field data were measured along a 12-km section of Highway 401 in 
Toronto, Canada. The simulated data were generated by modelling the same section using the 
INTEGRATION microscopic model in order to complement the testbed to include a systematic set of 
incidents for different traffic flow regimes and locations. It is intended that this testbed serve as a step 
towards the development of a standard tool for the objective evaluation of AID algorithms. 

I. INTRODUCTION 

What is an Incident? 

An incident was defined by Gall and Hall (1989) as a random event that may disrupt the orderly flow of 
freeway traffic. These incident events may include accidents, spilled truck loads, and stalled cars on the 
shoulder. The effect of an incident typically involves a change in the quantitative relationship of one or more 
of the macroscopic traffic variables (volume, density and speed) in the immediate neighbourhood of the 
causal event. An incident is, therefore, generally accompanied by the transition of a traffic stream from one 
traffic state to another. Such a transition is temporally and spatially limited by the shape of the shock waves, 
as illustrated in Figure 1. 

Importance of Incident Detection Algorithms 

Incident detection is an integral element of a comprehensive traffic control system. The importance of such 
an incident detection system is described in the following statistics provided by Busch (1991). 

First, depending on the traffic conditions and the environmental situation, between 20 and 50 percent of all 
accidents on freeways are classified as secondary accidents, because they are caused by preceding 
(primary) accidents. Second, far more than 50 percent of these secondary accidents occur within 10 minutes 
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of the first incident. Third, US studies in the Los Angeles conurbation have shown that more vehicle hours of 
delay result from extraordinary and accidentally occurring traffic disturbances (non-recurring) than from 
regularly occurring network overloading during typical daily peak hours (recurring). 

Another study conducted by Robinson (1995) found that the impact of incidents on traffic congestion is a 
function of many factors, including; the severity, duration, location, prevailing traffic demand and pattern; and 
the timing of the incident with respect to the start of the peak period. This study concluded that these 
sensitivities of delay, to various incident attributes, suggest that there exists considerable scope for effective 
incident detection and management. 

The ability to mitigate the impact of non-recurrent events, such as incidents, can potentially result in very 
substantial benefits in terms of a reduction in total system travel time, fuel consumption and vehicle 
emissions, and improvements in safety. Furthermore, the reduction of non-recurrent congestion may also 
increase total system throughput, thereby increasing the overall utilisation of the road network. 

In order to facilitate and expedite the detection of incidents Automatic Incident Detection (AID) algorithms 
have been developed over the past two decades and continue to be developed. Several of these AID 
algorithms are currently in practice, including the California algorithms (Payne and Tignor, 1978; Levin et al., 
1979; Arceneaux et al., 1989), the McMaster algorithm (Gall and Hall, 1989; Hall et al., 1993), APID 
(DelCan, 1987), and the Minnesota algorithm (Stephanedes et al., 1992; Stephanedes and Chassiakos, 
1993). These AID algorithms attempt to infer the occurrence of an incident on the basis of field data that are 
typically measured using in-ground induction loop detectors. 

Incident Detection Versus Congestion Detection 

The existing AID algorithms differ in their detection criteria, that are the rules used to declare the occurrence 
of an incident. Despite these inherent differences, most AID algorithms share a common problem: they do 
not detect incidents as such; rather they detect congestion resulting from the incidents. AID algorithms must 
be able to distinguish between congestion caused by an incident (incident congestion) and recurrent 
bottleneck congestion (recurrent congestion). The fact that AID algorithms detect congestion rather than 
incidents results in the following problems: 

a. Only incidents that cause congestion can be detected, resulting in what is termed in the literature as the 
detection rate. 

b. AID algorithms can, erroneously, identify recurring congestion as incident congestion, resulting in what 
is termed in the literature as false alarms. 

c. Congestion as a result of an incident requires some finite time to manifest itself, resulting in what is 
termed in the literature as the mean time to detection. 

Paper Layout 

This paper describes the development of a testbed of field and simulated data, that was generated and 
compiled at Queen’s University, for MTO for the purpose of evaluating AID algorithms. This testbed was 
compiled for a 12 kilometre section along Highway 401 in Toronto, Canada. 

The need for such a testbed is initially described in order to provide the context of this effort. Next, the study 
network that was utilised in compiling the AID testbed is described, prior to discussing the specifics of the 
testbed. Initially, the development of the field data component to the testbed is described in detail. This is 
followed by a description of the simulation component. The latter simulated dataset was required for two 
reasons. Firstly, it extends the field dataset by including more incidents. Secondly, it provides a controlled 
environment in which various incident scenarios and traffic conditions can be created by providing a wide 
variety of different but controlled incident and traffic conditions for the testing and evaluation of AID 
algorithms. 
Subsequently, the use of the testbed is illustrated using one of the state-of-the-art AID algorithms, namely; 
the McMaster algorithm. The intent of this evaluation is threefold. Firstly, it serves to verify that the simulated 
data, that was synthesised as part of the testbed, is sufficiently similar to field data for the application of AID 
algorithms. Secondly, it demonstrates how the testbed can be utilised to evaluate and quantify the 
performance of AID algorithms. Thirdly, it serves as a benchmark for the evaluation of other AID algorithms. 
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The final section to this paper provides the reader with a summary to the paper in addition to providing the 
main conclusions of the paper. 

II. BACKGROUND 
The literature provides the reader with numerous off-line and on-line evaluation tests of the current AID 
algorithms. These AID evaluation studies were usually conducted on different traffic network configurations 

Several factors impact the performance of AID algorithms. Some of these factors stem from the fact that AID 
 incidents, rather than incidents per se. As a result, 

. Closely spaced detector stations can result in a quicker detection 
of the congestion resulting from the incident. 

 testbed that is utilised in the evaluation process. For example, 
a testbed compiled for uncongested traffic conditions will most probably result in a lower false alarm rate and 

Several studies have evaluated and compared different AID algorithms. However, most of these studies 
awbacks. Firstly, these studies do not share a common data base and, 

furthermore, the characteristics of the data base are not usually described in sufficient detail. Secondly, not 

 algorithms including one of the Comparative algorithms. 
tive algorithms, again this study 

did not include the contemporary AID algorithms. 
 

4. ms including the Comparative algorithms and the 

5. hassiakos (1993) compared five algorithms 

 

The fir porary AID algorithms, like for 
xamp ms that utilise Artificial Neural 

Networks (ANN) or Fuzzy logic. The fifth study again did not include the McMaster algorithm, ANN and 

for different incident scenarios and different traffic demands. The objective of this section is to demonstrate 
the difficulty to objectively compare results across studies and thus demonstrate the need for a standard 
testbed for the evaluation of AID algorithms. 

Factors Influencing the Performance of AID Algorithms 

algorithms attempt to detect congestion that results from
these AID algorithms can only detect incidents that impact the traffic flow characteristics. Furthermore, the 
propagation of congestion upstream of the incident is a function of numerous factors, such as the level of 
congestion prior and during the incident, the severity of the incident, and the duration of the incident. As the 
level of congestion and the incident severity increases, the speed of the backward forming shockwave 
increases allowing the AID algorithm to detect some incidents sooner. However, as the level of congestion 
increases, the number of false alarms also increases as the AID algorithm may mistakenly identify recurring 
congestion as non-recurring congestion. 
Other factors that can impact the performance of AID algorithms include the spacing of detector stations and 
the technology of the surveillance system

It can therefore be concluded, based on these factors, that the performance of an AID algorithm strongly 
depends on the specific characteristics of the

detection rate compared to a testbed compiled for congested traffic conditions. 

Evaluation of AID Algorithms 

suffer from a number of dr

all state-of-the-art AID algorithms are included in each evaluation study. Consequently algorithms need to be 
compared across studies. Thirdly, each evaluation study requires that the evaluators involve in the tedious 
effort of compiling a realistic evaluation testbed. 

The most significant of evaluation studies of this type include the following: 

1. Cook and Cleveland (1974) compared 19
2. Payne et al., (1976) compared 24 algorithms including the Compara

3. Levin and Krause (1979) and Levin et al. (1979) compared five algorithms including a number of the
Comparative algorithms (algorithms 7, 8, and 10). 
Busch and Fellendorf (1990) compared 12 algorith
HIOCC algorithm for varying traffic demands and detector spacing. 
Stephanedes et al. (1992) and Stephanedes and C
including the Comparative algorithm 7 and the Minnesota algorithm. 

st four evaluation studies did not include a number of the contem
le the McMaster algorithm, the Minnesota algorithm or AID algorithe

Fuzzy logic algorithms. 
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The Need for a Testbed 

The literature demonstrates that there has not been a single evaluation study, up to this date, that has 
D algorithms, or at least all of the most promising AID algorithms. Furthermore, 

s are continuously evolving and new AID algorithms are continuing to be 

 consistent in terms of the detection technology. 

The proposed study area is composed of eight interchanges along a 12-km freeway section on Highway 401 
in Toronto, Canada. Highway 401 in Toronto experiences an average daily traffic flow of approximately 
340,000 vehicles, making it one of the most heavily travelled freeways in North America. The section along 

section 

g 

The 131 loop detectors, that are located along the study section, are polled every 20 seconds in order to 
measure the number of vehicles that  the tec (volume), t  percentage of time the detector is 
occupied (occupancy), and the aver s the detector (speed). These field 

ring the AM and PM peaks at the west end of the eastbound express and collector facilities as 
illustrated in Figure 3 and Figure 4, respectively. Alternatively, the westbound express and collector facilities 

evaluated all existing AI
because these algorithm
developed, there appears to be an urgent need for a standard benchmark testbed that can be utilised to 
objectively evaluate existing and emerging AID algorithms. 

A review by Busch (1991), together with a review of the state-of-the-art literature in AID algorithms, 
demonstrate that inductive loop detectors are still the primary source of measurement for virtually all existing 
systems. Thus, the existing evaluation studies appear to be
However, the traffic, incident and network configurations across the different literature sources vary 
considerably and thus it becomes extremely difficult to compare results across different studies. 
Consequently, there appears to be a need for a standard testbed to be utilised in evaluating and comparing 
different AID algorithms. 

III. STUDY NETWORK 

Highway 401 that was utilised in this study extends from Allen Road in the east to Kipling Avenue in the 
west, as illustrated in Figure 2. This 12-km freeway section includes an express facility and a parallel 
collector facility, each of which typically consists of three lanes in each direction. The express and collector 
facilities are connected at some locations by transfer lanes. Changeable message signs are also located 
along this section, and are used to balance the demand, between the express and collector facilities. 

The 12-km section of Highway 401, that is illustrated in Figure 2, was selected for the study for a number of 
reasons. Firstly, this section experiences major congestion during the AM and PM peak allowing the testbed 
to include field measurements during both uncongested and congested conditions. Secondly, as this 
of the freeway is part of the COMPASS freeway traffic management system, it is well equipped with 
surveillance technology. Thirdly, there was no major construction along this section during the field data 
analysis period (October 1995) and thus most of the detectors were functioning during the analysis period. 

As part of the Highway 401 COMPASS system, the study area encompasses a total of 131 detector stations 
that are spaced at approximately 600 metres. The detector spacing is consistent with a study Busch (1991) 
conducted which reviewed 21 European freeway surveillance systems, and found that the average spacin
between detector stations was approximately 500 metres. The detector stations along the Highway 401 
study network are located on the express, collector and transfer facilities in the eastbound and westbound 
directions. The detection technology along the study network, which is typical of most freeways in North 
America and Europe, consists of a combination of single and dual loop detectors (approximately 30 percent 
dual loops). 

IV. FIELD DATA COMPONENT 

 cross  de tor he
age speed at which vehicles cros

measurements, are archived on the COMPASS system at the Ontario Ministry of Transportation (MTO), and 
were utilised to compose the field component of the dataset. In addition, the MTO archives incident statistics 
for incidents that occur within the COMPASS system. These statistics include: the estimated incident start 
and end times, the start and end times identified by the AID algorithm, and any further information regarding 
the incident. 
Using these detector measurements, the typical spatial and temporal variation in flow, occupancy and speed 
along the study area were generated. The spatial and temporal variation in occupancy demonstrates 
congestion du
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experience congestion along the entire section during the AM and PM peaks as illustrated in Figure 5 and 
Figure 6, respectively. 

In compiling the field data, two potential approaches could have been undertaken. In the first approach, field 
data obtained just prior, during and just after the occurrence of an incident could be compiled and spliced 
with other incidents in order to form a concentrated bank of incidents. In the second approach, continuous 
field data obtained over a selected time frame (e.g. one week) would be compiled. These data would contain 

). The format that was utilised in compiling the data is 

pportunities to examine features that are not available in 
field data, including the ability to control the incident characteristics, and location as well as the traffic flow 
conditions prior, during and after the time when the incident is cleared. This level of control permits 
systematic assessment of AID algo t types, and surveillance levels. 

 

e node file, the link file, 
the signal timing file, the Origin-Destination (O-D) demand file, and the incident file. The node and link files 

led maps of the study area while the basic link traffic flow parameters were 

field data for incidents that were either detected or not detected, in addition to any false alarms that occurred 
on the study section during the analysis time frame. The advantage of the first approach is that the testbed 
includes a large number of incidents, while still reducing the data storage requirements. However, this 
approach also suffers from two major drawbacks, namely: the field data can be distorted by the splicing 
process, and the dataset may not provide enough opportunities for the AID algorithms to encounter false 
alarms. Consequently, in generating the AID testbed for this study, it was elected to utilise the second 
approach to compile the field data component in a continuous fashion and to supplement this dataset with 
continuous simulated data. The simulated data would add more incidents to the testbed, where these 
incidents could be configured under “laboratory” conditions, allowing for the testing of AID algorithms under 
different pre-selected incident and traffic conditions. 
Field data were collected for an entire week in October 1995 (October 9 to 15 inclusive). During the week 
under consideration, a total of 26 incidents occurred along the 12-km highway section, as summarised in 
Table 1. Each day’s dataset requires approximately 80 Mbytes of disk space, permitting the data for all 7 
days to be stored on a single CD (the field data CD
demonstrated in Table 2 and described in Table 3. 

V. SIMULATED DATA COMPONENT 
The generation of synthetic data provides several o

rithms for different flow regimes, inciden

Prior to utilising synthetic data as part of the testbed, it was critical that these synthetic data be tested for 
consistency with field data. Consequently, a study was conducted in order to verify that the characteristics of 
the synthetic data generated from the INTEGRATION model were similar to the characteristics of the field 
data for a subsection of the study section illustrated in Figure 2 (Hellinga et al., 1997). On the basis of these
verification comparisons, the study conducted by Hellinga et al. (1997) concluded that the simulated data 
exhibited similar trends to the field data allowing the simulated data to be used as part of the AID testbed. 

The next step in the generation of synthetic data was to code the same 12-km section along Highway 401 
for use with the INTEGRATION model. A brief description of the coding process and the experimental 
design that was utilised to create the bank of incidents are described in this section. 

Coding of Study Network 

The same 12-km network, that was described earlier in this paper, was coded for the INTEGRATION model. 
This coding entailed generating the five basic INTEGRATION input files, namely: th

were created using detai
calibrated to field loop detector data using a generalised Greenshields’ model (Van Aerde and Rakha, 
1995). The coded network, that is illustrated in Figure 2, is composed of 478 nodes, 30 origin-destination 
zones, and 597 links. Coding of ramp meter signals was not required as the Highway 401 is currently not 
ramp metered. Time varying 15-minute O-D demands were generated synthetically using 15-minute link flow 
counts that were generated from loop detector measurements (Van Aerde et al., 1991). The O-D demand 
was constructed to replicate the build up of the AM peak from 5:00 AM to 11:00 AM. 

Loop detectors were coded to replicate the location of field loop detectors. The intent was to replicate as 
much as possible the traffic and network conditions that were present in the field. 
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Creation of Synthetic Loop Detector Data 

The synthetic data component of the testbed, that was generated using the INTEGRATION model, includes 
were varied in order to generate a diversity of incident and 

rated in Table 4. These factors include the level of congestion 

ORITHM ON  ESTBED

The AID testbed that was compiled at Queen’s University includes a total of 101 incidents over 228 hours. 
These data compris s of simulated data 
including a total of 7

al of 140 hours of traffic data including 27 incidents was utilised to evaluate 

tudy. The McMaster algorithm was executed on the AID testbed for a number of 

 field at the time of the analysis (October 1995). The McMaster parameters that 

e of the study. Specifically, the Detection Rate (DR) was within 3 percent and the on-line False 

5 incidents as demonstrated in Table 8. Again, the parameters that were 
utilised in the analysis were identical to those derived at by MTO during the time of the analysis. Table 8 also 

a total of 75 incidents. Several factors 
background traffic scenarios as demonst
during the incident, the incident severity, the incident longitudinal location, the lateral location of the incident 
indicating which lane(s) were blocked, the incident duration, and the section geometry at the incident 
location. In order to generate these 75 incident scenarios a total of 10 simulation runs were conducted on 
the 12-kilometre freeway section as demonstrated in Table 5. Appendix (A) presents the incident files that 
were utilised to generate the synthetic testbed component. 

VI. EXECUTION OF MCMASTER ALG AID T  

e 168 hours of field data including a total of 26 incidents and 60 hour
5 incidents. 

The testbed that was compiled at Queen’s University offers several advantages over other testbeds that 
have been utilised to evaluate AID algorithms. Firstly, the size of this testbed is relatively large compared to 
other testbeds. Specifically, a tot
the Minnesota algorithm (Stephanedes and Athanasios, 1993), while a testbed of 64 normal weekdays 
including 28 incidents was utilised to evaluate the McMaster algorithm (Hall et al., 1993). Secondly, in this 
testbed, the majority of incidents are simulated allowing precise information regarding these incidents to be 
available, including the exact time at which each incident occurred, the exact duration of each incident, the 
exact longitude location of each incident, the exact latitude location of each incident, and the spatial length of 
each incident. These information are rarely available in the field. Thirdly, the simulated data provides a 
controlled environment for generating incidents for the evaluation of AID algorithms for different traffic and 
incident characteristics. 
The McMaster algorithm was coded based on information provided in the literature (Gall and Hall, 1989; Hall 
et al., 1993) which does not necessarily coincide with the proprietary McMaster logic that was running in the 
field at the time of the s
reasons. Firstly, because the McMaster algorithm operates in the field, it was essential that the coded logic 
be verified by comparing its results to the results of the McMaster algorithm that operated in the field at the 
time of the analysis. Secondly, the coded McMaster algorithm was executed on the simulated data in order 
to determine if the characteristics of the simulated data, in terms of incident detection, were consistent with 
the characteristics of the field data. Thirdly, it was important to generate some performance statistics for a 
typical AID algorithm in order to set the stage for the evaluation of other AID algorithms. This section 
describes the results of the execution of the McMaster algorithm on the AID testbed that was compiled for 
MTO at Queen’s University. 
The coded McMaster algorithm was tested on the field data component of the testbed in order to verify that 
the performance of the coded McMaster algorithm was consistent with the performance of the McMaster 
algorithm that operated in the
were utilised in the evaluation were the parameters that were used by MTO at the time of the analysis. The 
field data consisted of a total of 26 incidents that were recorded in the incident log that was compiled as part 
of the COMPASS system. Of these 26 incidents, the McMaster algorithm in the field detected 11 incidents 
while the coded McMaster algorithm detected 10 incidents of which 7 were common as demonstrated in 
Table 6. 

The results that are presented in Table 7 demonstrate that the version of the McMaster algorithm that was 
coded at Queen’s University performed very similar to the McMaster algorithm that was running in the field 
at the tim
Alarm Rate was within 1 percent. 

The next step was to verify that the simulated data produced similar results, in terms of automatic incident 
detection, as did the field data. Consequently, the coded McMaster algorithm was executed on the simulated 
data to detect 28 incidents of the 7
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lists the characteristics of each of the simulated incidents in terms of the exact duration and severity of the 
incident. Some of these incident statistics that are provided as part of the simulated data can not be obtained 
from field data such as, for example, the exact duration of the incident because of the typical lag in 
identifying incidents in the field. Because the simulated data provides a controlled environment for which 
precise incident information is available, it was paramount to include simulated data as part of the incident 
detection testbed. 

The results that are presented in Table 9 demonstrate that the performance of the McMaster algorithm was 
very similar for both the field and simulated data. Specifically, the Detection Rate (DR) was within 1 percent 
and the on-line False Alarm Rate (FAR) was within 2 percent. However, the off-line FAR was much higher 
for the simulated data versus the field data (approximately 6 folds higher). The precise reason for the large 

ueen’s University. 

field data and simulated data was compiled at 
Queen’s University. The field data is composed of a total of 168 hours of 20-second data measurements 
including a total of 26 incide ours of 20-second detector 
data including a total of 75 inc

resulted in a detection rate and an on-line false alarm rate within 2 

 results, it can be concluded that loop detector data generated from the 

c. 
, namely: off-peak versus peak conditions, different incident severities, different 
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Table 1: Incident summary for field data 
Incident number (Seq.) Date Time Station ID 

1 October 9, 1995 14:22:18 DW 0040 DWC 
2 October 9, 1995 19:15:17 DW 0080 DEE 
3 October 10, 1995 09:25:21 DW 0040 DWE 
4 October 10, 1995 09:26:47 DE 0060 DWC 
5 October 10, 1995 12:23:31 DE 0030 DWC 
6 October 10, 1995 12:39:31 DE 0020 DWC 
7 October 10, 1995 15:08:09 DW 0010 DWE 
8 October 10, 1995 15:33:26 DE 0070 DWC 
9 October 11, 1995 09:44:20 DE 0060 DWC 
10 October 11, 1995 09:45:44 DE 0080 DWC 
11 October 11, 1995 13:40:40 DE 0090 DEC 
12 October 11, 1995 17:44:11 DW 0040 DWS 
13 October 11, 1995 18:00:07 DE 0060 DWE 
14 October 11, 1995 19:00:11 DW 0060 DEC 
15 October 12, 1995 09:31:51 DW 0020 DWE 
16 October 12, 1995 09:54:00 DE 0080 DWE 
17 October 12, 1995 09:59:38 DW 0020 DWT 
18 October 12, 1995 15:14:22 DW 0030 DEC 
19 October 12, 1995 16:38:31 DW 0060 DEE 
20 October 13, 1995 09:45:05 DE 0070 DWE 
21 October 13, 1995 17:14:55 DW 0030 DWE 
22 October 13, 1995 22:47:27 DW 0080 DEE 
23 October 13, 1995 22:55:47 DW 0070 DEC 
24 October 14, 1995 00:19:53 DW 0040 DEE 
25 October 14, 1995 00:57:48 DW 0040 DEC 
26 October 15, 1995 12:50:11 DE 0070 DEC 

 

Table 2: Example illustration of loop detector file 
Line # Description 

1 
2 
3 
4 

Detector output for day 1 
20 16 10 1 540 112 30 401DW0010DES 
20 16 10 2 720 120 35 401DW0010DES 
20 16 10 3 1080 103 65 401DW0010DES 

 

Table 3: Description of fields in the loop detector file 
Line # Field Description 
1 1 File title (up to 40 characters) 
2+ 1 Time (seconds) at end of interval [integer] 
 2 Detector station identification number [integer] 
 3 Detector station type 
 4 Lane number - lanes are numbered consequtively from 1 in the median lane, increasing to the 

shoulder lane 
 5 Lane volume measured during previous polling interval (veh/h/lane) 
 6 Lane speed measured during previous polling interval (km/h) 
 7 Lane occupancy measured during the previous polling interval (percent) 
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Table 4: Factors considered in experimental design 
Factor Number Values 

A. Level of Congestion 2 off-peak and peak conditions 
B. Incident severity 2 1 and 2 lane blockage 
C. Incident longitudinal location 5 50, 100, 200, 300, and 500 metres upstream detector station 
D. Incident lateral location 3 median, centre, and shoulder 
E. Incident duration 5 1, 5, 10, 20, and 30 minutes 
D. Location geometry 5 upstream of on-ramp, downstream of on-ramp, upstream of off-ramp, downstream 

of off-ramp, and basic section 

 

Table 5: Experimental design for simulated data 
Factor Batch 

A B C D E F 
Total 

A-1 2 2 uncontrolled shoulder 1 and 20 min uncontrolled 8 
A-2 2 2 uncontrolled shoulder 5 and 10 min uncontrolled 8 
A-3 2 2 uncontrolled shoulder 30 min uncontrolled 4 
B peak 2 uncontrolled shoulder 5 min 5 10 

C-1 peak 1 lane 5 shoulder 5 min basic 5 
C-2 peak 1 lane 5 shoulder 1 min basic 5 
C-3 off-peak 1 lane 5 shoulder 5 min basic 5 
D-1 2 1 lane uncontrolled shoulder 5 uncontrolled 10 
D-2 2 1 lane uncontrolled centre 5 uncontrolled 10 
D-3 2 1 lane uncontrolled median 5 uncontrolled 10 

Total       75 

where: uncontrolled means that the factor is not controlled and can take different values 
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Table 6: Description of incidents in field dataset 
Incident Detected by 

algorithm in field 
Detected by coded 

algorithm 
Incident description 

1  Yes Partial blockage 
2   Partial blockage 
3 Yes Yes Partial blockage 
4   Partial blockage 
5 Yes Yes Partial blockage 
6   Partial blockage 
7   Partial blockage 
8 Yes Yes Partial blockage 
9   Partial blockage 
10   Partial blockage 
11   Partial blockage 
12 Yes  Partial blockage 
13  Yes Partial blockage 
14 Yes Yes Partial blockage 
15 Yes  Partial blockage 
16  Yes Partial blockage 
17   Total blockage of transfer 

lane 
18   Partial blockage 
19 Yes Yes Partial blockage 
20 Yes Yes Partial blockage 
21   Partial blockage 
22 Yes Yes Partial blockage 
23   Partial blockage 
24 Yes  Partial blockage 
25   Partial blockage 
26 Yes  Partial blockage 

 

Table 7: Comparison of field and coded McMaster algorithm results for field data 
component of testbed 

Parameter  Field Coded McMaster 
algorithm 

Total number of incidents A 26 26 
Total number of incidents detected B 11 10 
Total number of false alarms C 255 287 
Detection rate (B/A) D 42.3 38.5 % 
Total number of tests (1 per 20 sec) E 6,259,6801 6,259,6801 
Off-line false alarm rate (C/E × 100%) F 0.00407 % 0.00458 % 
On-line false alarm rate (100% × C/(B+C)) G 95.9 % 96.6 % 

1 7 days × 24 hours/day × 60 minutes/hour × 3 tests/minute × 207 detectors = 6,259,680 
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Table 8: Description of incidents in synthetic dataset 
Incident # Direction Facility Start Time 

(hours) 
Duration 
(minutes) 

Severity (lanes 
blocked) 

Lanes in 
Section 

Batch Detected? 

1 EB C 5:30 AM 20 2 4 Batch a-1  
2 EB C 7:30 AM 20 1 5 Batch a-1 Yes 
3 EB E 5:45 AM 1 2 3 Batch a-1  
4 WB E 5:45 AM 20 1 3 Batch a-1  
5 WB C 6:00 AM 1 1 4 Batch a-1  
6 WB E 8:15 AM 1 1 3 Batch a-1  
7 WB S 8:30 AM 20 2 5 Batch a-1  
8 WB C 8:00 AM 1 2 4 Batch a-1  
9 EB C 5:30 AM 10 2 4 Batch a-2  
10 EB C 7:30 AM 10 1 5 Batch a-2 Yes 
11 EB E 5:45 AM 5 2 3 Batch a-2  
12 WB E 5:45 AM 10 1 3 Batch a-2  
13 WB C 6:00 AM 5 1 4 Batch a-2  
14 WB E 8:15 AM 5 1 3 Batch a-2  
15 WB S 8:30 AM 10 2 5 Batch a-2  
16 WB C 8:00 AM 5 2 4 Batch a-2  
17 EB C 5:30 AM 30 1 4 Batch a-3  
18 EB C 5:45 AM 30 2 3 Batch a-3 Yes 
19 EB E 8:30 AM 30 2 5 Batch a-3  
20 WB E 7:30 AM 30 1 4 Batch a-3  
21 EB E 7:00 AM 5 1 3 Batch b Yes 
22 EB E 8:00 AM 5 1 3 Batch b  
23 WB E 7:30 AM 5 2 3 Batch b Yes 
24 WB C 8:15 AM 5 1 3 Batch b  
25 EB C 7:00 AM 5 1 3 Batch b  
26 EB E 8:00 AM 5 2 3 Batch b Yes 
27 WB C 7:15 AM 5 2 3 Batch b Yes 
28 EB E 7:30 AM 5 1 3 Batch b Yes 
29 WB E 7:00 AM 5 2 3 Batch b Yes 
30 WB C 7:45 AM 5 1 3 Batch b  
31 EB E 7:00 AM 5 1 3 Batch c-1 Yes 
32 WB E 7:00 AM 5 1 3 Batch c-1  
33 EB E 8:00 AM 5 1 3 Batch c-1  
34 WB E 7:45 AM 5 1 3 Batch c-1 Yes 
35 EB E 8:30 AM 5 1 3 Batch c-1 Yes 
36 EB E 7:00 AM 1 1 3 Batch c-2  
37 WB E 7:00 AM 1 1 3 Batch c-2  
38 EB E 8:00 AM 1 1 3 Batch c-2  
39 WB E 7:45 AM 1 1 3 Batch c-2  
40 EB E 8:30 AM 1 1 3 Batch c-2  
41 EB E 6:00 AM 5 1 3 Batch c-3  
42 WB E 6:00 AM 5 1 3 Batch c-3  
43 EB E 5:45 AM 5 1 3 Batch c-3  
44 WB E 5:30 AM 5 1 3 Batch c-3  
45 EB E 10:30 AM 5 1 3 Batch c-3 Yes 
46 EB C 6:30 AM 10 1 3 Batch d-1 Yes 
47 EB E 6:15 AM 5 1 3 Batch d-1  
48 EB C 10:00 AM 30 1 3 Batch d-1 Yes 
49 WB E 6:09 AM 20 1 3 Batch d-1  
50 WB C 10:19 AM 1 1 3 Batch d-1  
51 WB E 8:15 AM 10 1 3 Batch d-1 Yes 
52 WB C 7:39 AM 10 1 3 Batch d-1  
53 WB C 8:00 AM 1 1 3 Batch d-1  
54 EB E 8:00 AM 30 1 3 Batch d-1 Yes 
55 EB E 7:39 AM 20 1 3 Batch d-1 Yes 
56 EB C 6:30 AM 10 1 3 Batch d-2 Yes 
57 EB E 6:15 AM 5 1 3 Batch d-2  
58 EB C 10:00 AM 30 1 3 Batch d-2 Yes 
59 WB E 6:09 AM 20 1 3 Batch d-2  
60 WB C 10:19 AM 1 1 3 Batch d-2  
61 WB E 8:15 AM 10 1 3 Batch d-2 Yes 
62 WB C 7:39 AM 10 1 3 Batch d-2  
63 WB C 8:00 AM 1 1 3 Batch d-2  
64 EB E 8:00 AM 30 1 3 Batch d-2 Yes 
65 EB E 7:39 AM 20 1 3 Batch d-2 Yes 
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66 EB C 6:30 AM 10 1 3 Batch d-3 Yes 
67 EB E 6:15 AM 5 1 3 Batch d-3  
68 EB C 10:00 AM 30 1 3 Batch d-3 Yes 
69 WB E 6:09 AM 20 1 3 Batch d-3  
70 WB C 10:19 AM 1 1 3 Batch d-3  
71 WB E 8:15 AM 10 1 3 Batch d-3 Yes 
72 WB C 7:39 AM 10 1 3 Batch d-3  
73 WB C 8:00 AM 1 1 3 Batch d-3  
74 EB E 8:00 AM 30 1 3 Batch d-3 Yes 
75 EB E 7:39 AM 20 1 3 Batch d-3 Yes 

 

Table 9: Comparison of McMaster algorithm results for field and synthetic data 
Parameter  Field Data Simulated Data 
Total number of incidents A 26 75 
Total number of incidents detected B 10 28 
Total number of false alarms C 287 473 
Detection rate (B/A) D 38.5 % 37.3 % 
Total number of tests (1 per 20 sec) E 6,259,6801 2,235,6002 
Off-line false alarm rate (C/E × 100%) F 0.00458 % 0.0212 % 
On-line false alarm rate (100% × C/(B+C)) G 96.6 % 94.4 % 

1 7 days × 24 hours/day × 60 minutes/hour × 3 tests/minute × 207 detectors = 
6,259,680 
2 10 runs × 6 hours/run × 60 minutes/hour × 3 tests/minute × 207 detectors = 
2,235,600 

 

Time

s1

incident

vehicle trajectory
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Figure 1: Representation of the impact of an incident on vehicle space-time trajectories 
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Figure 2: Study network configuration (Hwy 401, Toronto, Canada) 
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Figure 3: Typical spatial and temporal variation in occupancy on study network along 
eastbound expressway 
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Figure 4: Typical spatial and temporal variation in occupancy on study network along 
eastbound collector 
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Figure 5: Typical spatial and temporal variation in occupancy on study network along 
westbound expressway 
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Figure 6: Typical spatial and temporal variation in occupancy on study network along 
westbound collector 

 

APPENDIX (A) 
 

TABLE A.1: INCIDENT FILE FOR BATCH A-1 

hwy 401 - 8 interchange network: Batch A1 
-8                                                                    u/s detector 
1  160   0.120  0.220   1800  3000  0011      Inc. A - 5:30-5:50 2 lanes   39 
2  167   0.225  0.325   9000 10200 00001      Inc. B - 7:30-7:50 1 lane    71 
3  344   0.240  0.340   2700  2760   011      Inc. C - 5:45-5:46 2 lanes  149 
4  448   0.260  0.360   2700  3900   001      Inc. D - 5:45-6:05 1 lane   107 
5  280   0.205  0.305   3600  3660  0001      Inc. E - 6:00-6:01 1 lane    83 
6  458   0.200  0.300  11700 11760   001      Inc. F - 8:15-8:16 1 lane    69 
7  305   0.100  0.200  12600 13800 00011      Inc. G - 8:30-8:50 2 lanes    4 
8  286   0.100  0.200  10800 10860  0011      Inc. H - 8:00-8:01 2 lanes   54 
 

TABLE A.2: INCIDENT FILE FOR BATCH A-2 

hwy 401 - 8 interchange network: Batch A2 
-8 
1  160   0.120  0.220   1800  2400  0011      Inc. A - 5:30-5:40 2 lanes   39 
2  167   0.225  0.325   9000  9600 00001      Inc. B - 7:30-7:40 1 lane    71 
3  344   0.240  0.340   2700  3000   011      Inc. C - 5:45-5:50 2 lanes  149 
4  448   0.260  0.360   2700  3300   001      Inc. D - 5:45-5:55 1 lane   107 
5  280   0.205  0.305   3600  3900  0001      Inc. E - 6:00-6:05 1 lane    83 
6  458   0.200  0.300  11700 12000   001      Inc. F - 8:15-8:20 1 lane    69 
7  305   0.100  0.200  12600 13200 00011      Inc. G - 8:30-8:40 2 lanes    4 
8  286   0.100  0.200  10800 11100  0011      Inc. H - 8:00-8:05 2 lanes   54 
 

TABLE A.3: INCIDENT FILE FOR BATCH A-3 

hwy 401 - 8 interchange network: Batch A3 
-4 
1  160   0.120  0.220   1800  3600  0001      Incident A -  5:30-6:00   39 
2  344   0.240  0.340   2700  4500   011      Incident C -  5:45-6:15  149 
3  305   0.100  0.200  12600 14400 00011      Incident G -  8:30-9:00    4 
4  455   0.200  0.300   9000 10800  0001      Incident I -  7:30-8:00   84 
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TABLE A.4: INCIDENT FILE FOR BATCH B 

highway 401 - June/96 Batch B 
     -10 
       1     345   0.374   0.424    7200    7500    001  155 
       2     317   0.088   0.138   10800   11100    001   17 
       3     446  0.1615  0.2115    9000    9300    011  113 
       4     284  0.1275  0.1775   11700   12000    001   68 
       5     165  0.2245  0.2745    7200    7500    001   53 
       6     328   0.271   0.321   10800   11100    011   74 
       7     279   0.159   0.209    8100    8400    011   83 
       8     334    0.28    0.33    9000    9300    001  104 
       9     300   0.371   0.421    7200    7500    011   13 
      10     292   0.119   0.169    9900   10200    001   41 
 

TABLE A.5: INCIDENT FILE FOR BATCH C-1 

highway 401 - 8 interchange network : Batch C-1 
      -5 
       1     344   0.375   0.425    7200    7500 001            7:00:00 200m   149 
       2     448    0.48    0.53    7200    7500 001            7:00:00 300m   107 
       3     333   0.515   0.565   10800   11100 001            8:00:00 500m    93 
       4     457    0.33    0.38    9900   10200 001            7:45:00 100m    69 
       5     321    0.12    0.17   12600   12900 001            8:30:00  50m    31 
 

TABLE A.6: INCIDENT FILE FOR BATCH C-2 

highway 401 - 8 interchange network : Batch C-2 
      -5 
       1     344   0.375   0.425    7200    7260 001            7:00:00 200m   149 
       2     448    0.48    0.53    7200    7260 001            7:00:00 300m   107 
       3     333   0.515   0.565   10800   10860 001            8:00:00 500m    93 
       4     457    0.33    0.38    9900    9960 001            7:45:00 100m    69 
       5     321    0.12    0.17   12600   12660 001            8:30:00  50m    31 
 

TABLE A.7: INCIDENT FILE FOR BATCH C-3 

highway 401 - 8 interchange network : Batch C-3 
      -5 
       1     344   0.375   0.425    3600    3900 001            6:00:00 200m   149 
       2     448    0.48    0.53    3600    3900 001            6:00:00 300m   107 
       3     333   0.515   0.565    2700    3000 001            5:45:00 500m    93 
       4     457    0.33    0.38    1800    2100 001            5:30:00 100m    69 
       5     321    0.12    0.17   19800   20100 001           10:30:00  50m    31 
 

TABLE A.8: INCIDENT FILE FOR BATCH D-1 

hwy 401 - 8 interchange network: Batch D-1 
-10 
1  158   0.025  0.125   5400  6000   001      Inc. A - 6:30- 6:40    26 
2  322   0.400  0.500   4500  4800   001      Inc. B - 6:15- 6:20    38 
3  180   0.250  0.350  18000 19800   001      Inc. C -10:00-10:30   105 
4  458   0.200  0.300   4200  5400   001      Inc. D - 6:10- 6:30    69 
5  444   0.150  0.250  19200 19260   001      Inc. E -10:20-10:21   136 
6  448   0.255  0.355  11700 12300   001      Inc. F - 8:15- 8:25   107 
7  282   0.100  0.200   9600 10200   001      Inc. G - 7:40- 7:50    76 
8  297   0.060  0.160  10800 10860   001      Inc. H - 8:00- 8:01    24 
9  328   0.250  0.350  10800 12600   001      Inc. I - 8:00- 8:30    74 
10 438   0.080  0.180   9600 10800   001      Inc. J - 7:40- 8:00   148 
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TABLE A.9: INCIDENT FILE FOR BATCH D-2 

hwy 401 - 8 interchange network: Batch D-2 
-10 
1  158   0.025  0.125   5400  6000   010      Inc. A - 6:30- 6:40    26 
2  322   0.400  0.500   4500  4800   010      Inc. B - 6:15- 6:20    38 
3  180   0.250  0.350  18000 19800   010      Inc. C -10:00-10:30   105 
4  458   0.200  0.300   4200  5400   010      Inc. D - 6:10- 6:30    69 
5  444   0.150  0.250  19200 19260   010      Inc. E -10:20-10:21   136 
6  448   0.255  0.355  11700 12300   010      Inc. F - 8:15- 8:25   107 
7  282   0.100  0.200   9600 10200   010      Inc. G - 7:40- 7:50    76 
8  297   0.060  0.160  10800 10860   010      Inc. H - 8:00- 8:01    24 
9  328   0.250  0.350  10800 12600   010      Inc. I - 8:00- 8:30    74 
10 438   0.080  0.180   9600 10800   010      Inc. J - 7:40- 8:00   148 
 

TABLE A.10: INCIDENT FILE FOR BATCH D-3 

hwy 401 - 8 interchange network: Batch D-3 
-10 
1  158   0.025  0.125   5400  6000   100      Inc. A - 6:30- 6:40    26 
2  322   0.400  0.500   4500  4800   100      Inc. B - 6:15- 6:20    38 
3  180   0.250  0.350  18000 19800   100      Inc. C -10:00-10:30   105 
4  458   0.200  0.300   4200  5400   100      Inc. D - 6:10- 6:30    69 
5  444   0.150  0.250  19200 19260   100      Inc. E -10:20-10:21   136 
6  448   0.255  0.355  11700 12300   100      Inc. F - 8:15- 8:25   107 
7  282   0.100  0.200   9600 10200   100      Inc. G - 7:40- 7:50    76 
8  297   0.060  0.160  10800 10860   100      Inc. H - 8:00- 8:01    24 
9  328   0.250  0.350  10800 12600   100      Inc. I - 8:00- 8:30    74 
10 438   0.080  0.180   9600 10800   100      Inc. J - 7:40- 8:00   148 
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