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ABSTRACT

Automatic Incident Detection (AID) algorithms are an integral component of incident management systems.
Consequently, several incident management algorithms have been developed to respond to this need.
However, none of these available AID algorithms has proven to be superior or dominant in all situations.
Consequently, agencies that are contemplating to incorporate an AID algorithm as part of their Freeway
Traffic Management System (FTMS) are faced with the difficult task of selecting the most appropriate
algorithm for their situation.

The literature describes numerous off-line and on-line evaluation tests of current state-of-the-art AID
algorithms. However, because these AID evaluation studies were conducted on different traffic network
configurations for different incident scenarios and different traffic demands, a rigorous objective comparison
of the various AID algorithms is very difficult. Consequently, there appears to be an urgent need for a
standard testbed that can easily be utilised to evaluate and compare various AID algorithms.

This paper describes how a testbed that is composed of field and simulated data. The field data consists of
168 hours of 20-second data, including 26 incidents, while the simulated data consists of 60 hours of 20-
second data including 75 incidents. The field data were measured along a 12-km section of Highway 401 in
Toronto, Canada. The simulated data were generated by modelling the same section using the
INTEGRATION microscopic model in order to complement the testbed to include a systematic set of
incidents for different traffic flow regimes and locations. It is intended that this testbed serve as a step
towards the development of a standard tool for the objective evaluation of AID algorithms.

[. INTRODUCTION

What is an Incident?

An incident was defined by Gall and Hall (1989) as a random event that may disrupt the orderly flow of
freeway traffic. These incident events may include accidents, spilled truck loads, and stalled cars on the
shoulder. The effect of an incident typically involves a change in the quantitative relationship of one or more
of the macroscopic traffic variables (volume, density and speed) in the immediate neighbourhood of the
causal event. An incident is, therefore, generally accompanied by the transition of a traffic stream from one
traffic state to another. Such a transition is temporally and spatially limited by the shape of the shock waves,
as illustrated in Figure 1.

Importance of Incident Detection Algorithms

Incident detection is an integral element of a comprehensive traffic control system. The importance of such
an incident detection system is described in the following statistics provided by Busch (1991).

First, depending on the traffic conditions and the environmental situation, between 20 and 50 percent of all
accidents on freeways are classified as secondary accidents, because they are caused by preceding
(primary) accidents. Second, far more than 50 percent of these secondary accidents occur within 10 minutes

1 Charles Via Department of Civil and Environmental Engineering. Virginia Tech Transportation Institute,
3500 Transportation Research Plaza, Blacksburg, VA 24060.

2 Civil and Environmental Engineering Department. University of Waterloo.

3 Posthumously.



H. Rakha, B. Hellinga and M. Van Aerde Page 2

of the first incident. Third, US studies in the Los Angeles conurbation have shown that more vehicle hours of
delay result from extraordinary and accidentally occurring traffic disturbances (non-recurring) than from
regularly occurring network overloading during typical daily peak hours (recurring).

Another study conducted by Robinson (1995) found that the impact of incidents on traffic congestion is a
function of many factors, including; the severity, duration, location, prevailing traffic demand and pattern; and
the timing of the incident with respect to the start of the peak period. This study concluded that these
sensitivities of delay, to various incident attributes, suggest that there exists considerable scope for effective
incident detection and management.

The ability to mitigate the impact of non-recurrent events, such as incidents, can potentially result in very
substantial benefits in terms of a reduction in total system travel time, fuel consumption and vehicle
emissions, and improvements in safety. Furthermore, the reduction of non-recurrent congestion may also
increase total system throughput, thereby increasing the overall utilisation of the road network.

In order to facilitate and expedite the detection of incidents Automatic Incident Detection (AID) algorithms
have been developed over the past two decades and continue to be developed. Several of these AID
algorithms are currently in practice, including the California algorithms (Payne and Tignor, 1978; Levin et al.,
1979; Arceneaux et al., 1989), the McMaster algorithm (Gall and Hall, 1989; Hall et al., 1993), APID
(DelCan, 1987), and the Minnesota algorithm (Stephanedes et al., 1992; Stephanedes and Chassiakos,
1993). These AID algorithms attempt to infer the occurrence of an incident on the basis of field data that are
typically measured using in-ground induction loop detectors.

Incident Detection Versus Congestion Detection

The existing AID algorithms differ in their detection criteria, that are the rules used to declare the occurrence
of an incident. Despite these inherent differences, most AID algorithms share a common problem: they do
not detect incidents as such; rather they detect congestion resulting from the incidents. AID algorithms must
be able to distinguish between congestion caused by an incident (incident congestion) and recurrent
bottleneck congestion (recurrent congestion). The fact that AID algorithms detect congestion rather than
incidents results in the following problems:

a. Only incidents that cause congestion can be detected, resulting in what is termed in the literature as the
detection rate.

b. AID algorithms can, erroneously, identify recurring congestion as incident congestion, resulting in what
is termed in the literature as false alarms.

c. Congestion as a result of an incident requires some finite time to manifest itself, resulting in what is
termed in the literature as the mean time to detection.

Paper Layout

This paper describes the development of a testbed of field and simulated data, that was generated and
compiled at Queen’s University, for MTO for the purpose of evaluating AID algorithms. This testbed was
compiled for a 12 kilometre section along Highway 401 in Toronto, Canada.

The need for such a testbed is initially described in order to provide the context of this effort. Next, the study
network that was utilised in compiling the AID testbed is described, prior to discussing the specifics of the
testbed. Initially, the development of the field data component to the testbed is described in detail. This is
followed by a description of the simulation component. The latter simulated dataset was required for two
reasons. Firstly, it extends the field dataset by including more incidents. Secondly, it provides a controlled
environment in which various incident scenarios and traffic conditions can be created by providing a wide
variety of different but controlled incident and traffic conditions for the testing and evaluation of AID
algorithms.

Subsequently, the use of the testbed is illustrated using one of the state-of-the-art AID algorithms, namely;
the McMaster algorithm. The intent of this evaluation is threefold. Firstly, it serves to verify that the simulated
data, that was synthesised as part of the testbed, is sufficiently similar to field data for the application of AID
algorithms. Secondly, it demonstrates how the testbed can be utilised to evaluate and quantify the
performance of AID algorithms. Thirdly, it serves as a benchmark for the evaluation of other AID algorithms.
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The final section to this paper provides the reader with a summary to the paper in addition to providing the
main conclusions of the paper.

[I. BACKGROUND

The literature provides the reader with numerous off-line and on-line evaluation tests of the current AID
algorithms. These AID evaluation studies were usually conducted on different traffic network configurations
for different incident scenarios and different traffic demands. The objective of this section is to demonstrate
the difficulty to objectively compare results across studies and thus demonstrate the need for a standard
testbed for the evaluation of AID algorithms.

Factors Influencing the Performance of AID Algorithms

Several factors impact the performance of AID algorithms. Some of these factors stem from the fact that AID
algorithms attempt to detect congestion that results from incidents, rather than incidents per se. As a resullt,
these AID algorithms can only detect incidents that impact the traffic flow characteristics. Furthermore, the
propagation of congestion upstream of the incident is a function of numerous factors, such as the level of
congestion prior and during the incident, the severity of the incident, and the duration of the incident. As the
level of congestion and the incident severity increases, the speed of the backward forming shockwave
increases allowing the AID algorithm to detect some incidents sooner. However, as the level of congestion
increases, the number of false alarms also increases as the AID algorithm may mistakenly identify recurring
congestion as non-recurring congestion.

Other factors that can impact the performance of AID algorithms include the spacing of detector stations and
the technology of the surveillance system. Closely spaced detector stations can result in a quicker detection
of the congestion resulting from the incident.

It can therefore be concluded, based on these factors, that the performance of an AID algorithm strongly
depends on the specific characteristics of the testbed that is utilised in the evaluation process. For example,
a testbed compiled for uncongested traffic conditions will most probably result in a lower false alarm rate and
detection rate compared to a testbed compiled for congested traffic conditions.

Evaluation of AID Algorithms

Several studies have evaluated and compared different AID algorithms. However, most of these studies
suffer from a number of drawbacks. Firstly, these studies do not share a common data base and,
furthermore, the characteristics of the data base are not usually described in sufficient detail. Secondly, not
all state-of-the-art AID algorithms are included in each evaluation study. Consequently algorithms need to be
compared across studies. Thirdly, each evaluation study requires that the evaluators involve in the tedious
effort of compiling a realistic evaluation testbed.

The most significant of evaluation studies of this type include the following:

1. Cook and Cleveland (1974) compared 19 algorithms including one of the Comparative algorithms.

2. Payne et al., (1976) compared 24 algorithms including the Comparative algorithms, again this study
did not include the contemporary AID algorithms.

3. Levin and Krause (1979) and Levin et al. (1979) compared five algorithms including a number of the
Comparative algorithms (algorithms 7, 8, and 10).

4. Busch and Fellendorf (1990) compared 12 algorithms including the Comparative algorithms and the
HIOCC algorithm for varying traffic demands and detector spacing.

5. Stephanedes et al. (1992) and Stephanedes and Chassiakos (1993) compared five algorithms
including the Comparative algorithm 7 and the Minnesota algorithm.

The first four evaluation studies did not include a number of the contemporary AID algorithms, like for
example the McMaster algorithm, the Minnesota algorithm or AID algorithms that utilise Artificial Neural
Networks (ANN) or Fuzzy logic. The fifth study again did not include the McMaster algorithm, ANN and
Fuzzy logic algorithms.
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The Need for a Testbed

The literature demonstrates that there has not been a single evaluation study, up to this date, that has
evaluated all existing AID algorithms, or at least all of the most promising AID algorithms. Furthermore,
because these algorithms are continuously evolving and new AID algorithms are continuing to be
developed, there appears to be an urgent need for a standard benchmark testbed that can be utilised to
objectively evaluate existing and emerging AID algorithms.

A review by Busch (1991), together with a review of the state-of-the-art literature in AID algorithms,
demonstrate that inductive loop detectors are still the primary source of measurement for virtually all existing
systems. Thus, the existing evaluation studies appear to be consistent in terms of the detection technology.
However, the traffic, incident and network configurations across the different literature sources vary
considerably and thus it becomes extremely difficult to compare results across different studies.
Consequently, there appears to be a need for a standard testbed to be utilised in evaluating and comparing
different AID algorithms.

[ll. STUDY NETWORK

The proposed study area is composed of eight interchanges along a 12-km freeway section on Highway 401
in Toronto, Canada. Highway 401 in Toronto experiences an average daily traffic flow of approximately
340,000 vehicles, making it one of the most heavily travelled freeways in North America. The section along
Highway 401 that was utilised in this study extends from Allen Road in the east to Kipling Avenue in the
west, as illustrated in Figure 2. This 12-km freeway section includes an express facility and a parallel
collector facility, each of which typically consists of three lanes in each direction. The express and collector
facilities are connected at some locations by transfer lanes. Changeable message signs are also located
along this section, and are used to balance the demand, between the express and collector facilities.

The 12-km section of Highway 401, that is illustrated in Figure 2, was selected for the study for a number of
reasons. Firstly, this section experiences major congestion during the AM and PM peak allowing the testbed
to include field measurements during both uncongested and congested conditions. Secondly, as this section
of the freeway is part of the COMPASS freeway traffic management system, it is well equipped with
surveillance technology. Thirdly, there was no major construction along this section during the field data
analysis period (October 1995) and thus most of the detectors were functioning during the analysis period.

As part of the Highway 401 COMPASS system, the study area encompasses a total of 131 detector stations
that are spaced at approximately 600 metres. The detector spacing is consistent with a study Busch (1991)
conducted which reviewed 21 European freeway surveillance systems, and found that the average spacing
between detector stations was approximately 500 metres. The detector stations along the Highway 401
study network are located on the express, collector and transfer facilities in the eastbound and westbound
directions. The detection technology along the study network, which is typical of most freeways in North
America and Europe, consists of a combination of single and dual loop detectors (approximately 30 percent
dual loops).

IV. FIELD DATA COMPONENT

The 131 loop detectors, that are located along the study section, are polled every 20 seconds in order to
measure the number of vehicles that cross the detector (volume), the percentage of time the detector is
occupied (occupancy), and the average speed at which vehicles cross the detector (speed). These field
measurements, are archived on the COMPASS system at the Ontario Ministry of Transportation (MTO), and
were utilised to compose the field component of the dataset. In addition, the MTO archives incident statistics
for incidents that occur within the COMPASS system. These statistics include: the estimated incident start
and end times, the start and end times identified by the AID algorithm, and any further information regarding
the incident.

Using these detector measurements, the typical spatial and temporal variation in flow, occupancy and speed
along the study area were generated. The spatial and temporal variation in occupancy demonstrates
congestion during the AM and PM peaks at the west end of the eastbound express and collector facilities as
illustrated in Figure 3 and Figure 4, respectively. Alternatively, the westbound express and collector facilities
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experience congestion along the entire section during the AM and PM peaks as illustrated in Figure 5 and
Figure 6, respectively.

In compiling the field data, two potential approaches could have been undertaken. In the first approach, field
data obtained just prior, during and just after the occurrence of an incident could be compiled and spliced
with other incidents in order to form a concentrated bank of incidents. In the second approach, continuous
field data obtained over a selected time frame (e.g. one week) would be compiled. These data would contain
field data for incidents that were either detected or not detected, in addition to any false alarms that occurred
on the study section during the analysis time frame. The advantage of the first approach is that the testbed
includes a large number of incidents, while still reducing the data storage requirements. However, this
approach also suffers from two major drawbacks, namely: the field data can be distorted by the splicing
process, and the dataset may not provide enough opportunities for the AID algorithms to encounter false
alarms. Consequently, in generating the AID testbed for this study, it was elected to utilise the second
approach to compile the field data component in a continuous fashion and to supplement this dataset with
continuous simulated data. The simulated data would add more incidents to the testbed, where these
incidents could be configured under “laboratory” conditions, allowing for the testing of AID algorithms under
different pre-selected incident and traffic conditions.

Field data were collected for an entire week in October 1995 (October 9 to 15 inclusive). During the week
under consideration, a total of 26 incidents occurred along the 12-km highway section, as summarised in
Table 1. Each day’s dataset requires approximately 80 Mbytes of disk space, permitting the data for all 7
days to be stored on a single CD (the field data CD). The format that was utilised in compiling the data is
demonstrated in Table 2 and described in Table 3.

V. SIMULATED DATA COMPONENT

The generation of synthetic data provides several opportunities to examine features that are not available in
field data, including the ability to control the incident characteristics, and location as well as the traffic flow
conditions prior, during and after the time when the incident is cleared. This level of control permits
systematic assessment of AID algorithms for different flow regimes, incident types, and surveillance levels.

Prior to utilising synthetic data as part of the testbed, it was critical that these synthetic data be tested for
consistency with field data. Consequently, a study was conducted in order to verify that the characteristics of
the synthetic data generated from the INTEGRATION model were similar to the characteristics of the field
data for a subsection of the study section illustrated in Figure 2 (Hellinga et al., 1997). On the basis of these
verification comparisons, the study conducted by Hellinga et al. (1997) concluded that the simulated data
exhibited similar trends to the field data allowing the simulated data to be used as part of the AID testbed.

The next step in the generation of synthetic data was to code the same 12-km section along Highway 401
for use with the INTEGRATION model. A brief description of the coding process and the experimental
design that was utilised to create the bank of incidents are described in this section.

Coding of Study Network

The same 12-km network, that was described earlier in this paper, was coded for the INTEGRATION model.
This coding entailed generating the five basic INTEGRATION input files, namely: the node file, the link file,
the signal timing file, the Origin-Destination (O-D) demand file, and the incident file. The node and link files
were created using detailed maps of the study area while the basic link traffic flow parameters were
calibrated to field loop detector data using a generalised Greenshields’ model (Van Aerde and Rakha,
1995). The coded network, that is illustrated in Figure 2, is composed of 478 nodes, 30 origin-destination
zones, and 597 links. Coding of ramp meter signals was not required as the Highway 401 is currently not
ramp metered. Time varying 15-minute O-D demands were generated synthetically using 15-minute link flow
counts that were generated from loop detector measurements (Van Aerde et al., 1991). The O-D demand
was constructed to replicate the build up of the AM peak from 5:00 AM to 11:00 AM.

Loop detectors were coded to replicate the location of field loop detectors. The intent was to replicate as
much as possible the traffic and network conditions that were present in the field.
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Creation of Synthetic Loop Detector Data

The synthetic data component of the testbed, that was generated using the INTEGRATION model, includes
a total of 75 incidents. Several factors were varied in order to generate a diversity of incident and
background traffic scenarios as demonstrated in Table 4. These factors include the level of congestion
during the incident, the incident severity, the incident longitudinal location, the lateral location of the incident
indicating which lane(s) were blocked, the incident duration, and the section geometry at the incident
location. In order to generate these 75 incident scenarios a total of 10 simulation runs were conducted on
the 12-kilometre freeway section as demonstrated in Table 5. Appendix (A) presents the incident files that
were utilised to generate the synthetic testbed component.

VI. EXECUTION OF MCMASTER ALGORITHM ON AID TESTBED

The AID testbed that was compiled at Queen’s University includes a total of 101 incidents over 228 hours.
These data comprise 168 hours of field data including a total of 26 incidents and 60 hours of simulated data
including a total of 75 incidents.

The testbed that was compiled at Queen’s University offers several advantages over other testbeds that
have been utilised to evaluate AID algorithms. Firstly, the size of this testbed is relatively large compared to
other testbeds. Specifically, a total of 140 hours of traffic data including 27 incidents was utilised to evaluate
the Minnesota algorithm (Stephanedes and Athanasios, 1993), while a testbed of 64 normal weekdays
including 28 incidents was utilised to evaluate the McMaster algorithm (Hall et al., 1993). Secondly, in this
testbed, the majority of incidents are simulated allowing precise information regarding these incidents to be
available, including the exact time at which each incident occurred, the exact duration of each incident, the
exact longitude location of each incident, the exact latitude location of each incident, and the spatial length of
each incident. These information are rarely available in the field. Thirdly, the simulated data provides a
controlled environment for generating incidents for the evaluation of AID algorithms for different traffic and
incident characteristics.

The McMaster algorithm was coded based on information provided in the literature (Gall and Hall, 1989; Hall
et al., 1993) which does not necessarily coincide with the proprietary McMaster logic that was running in the
field at the time of the study. The McMaster algorithm was executed on the AID testbed for a number of
reasons. Firstly, because the McMaster algorithm operates in the field, it was essential that the coded logic
be verified by comparing its results to the results of the McMaster algorithm that operated in the field at the
time of the analysis. Secondly, the coded McMaster algorithm was executed on the simulated data in order
to determine if the characteristics of the simulated data, in terms of incident detection, were consistent with
the characteristics of the field data. Thirdly, it was important to generate some performance statistics for a
typical AID algorithm in order to set the stage for the evaluation of other AID algorithms. This section
describes the results of the execution of the McMaster algorithm on the AID testbed that was compiled for
MTO at Queen’s University.

The coded McMaster algorithm was tested on the field data component of the testbed in order to verify that
the performance of the coded McMaster algorithm was consistent with the performance of the McMaster
algorithm that operated in the field at the time of the analysis (October 1995). The McMaster parameters that
were utilised in the evaluation were the parameters that were used by MTO at the time of the analysis. The
field data consisted of a total of 26 incidents that were recorded in the incident log that was compiled as part
of the COMPASS system. Of these 26 incidents, the McMaster algorithm in the field detected 11 incidents
while the coded McMaster algorithm detected 10 incidents of which 7 were common as demonstrated in
Table 6.

The results that are presented in Table 7 demonstrate that the version of the McMaster algorithm that was
coded at Queen’s University performed very similar to the McMaster algorithm that was running in the field
at the time of the study. Specifically, the Detection Rate (DR) was within 3 percent and the on-line False
Alarm Rate was within 1 percent.

The next step was to verify that the simulated data produced similar results, in terms of automatic incident
detection, as did the field data. Consequently, the coded McMaster algorithm was executed on the simulated
data to detect 28 incidents of the 75 incidents as demonstrated in Table 8. Again, the parameters that were
utilised in the analysis were identical to those derived at by MTO during the time of the analysis. Table 8 also
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lists the characteristics of each of the simulated incidents in terms of the exact duration and severity of the
incident. Some of these incident statistics that are provided as part of the simulated data can not be obtained
from field data such as, for example, the exact duration of the incident because of the typical lag in
identifying incidents in the field. Because the simulated data provides a controlled environment for which
precise incident information is available, it was paramount to include simulated data as part of the incident
detection testbed.

The results that are presented in Table 9 demonstrate that the performance of the McMaster algorithm was
very similar for both the field and simulated data. Specifically, the Detection Rate (DR) was within 1 percent
and the on-line False Alarm Rate (FAR) was within 2 percent. However, the off-line FAR was much higher
for the simulated data versus the field data (approximately 6 folds higher). The precise reason for the large
discrepancy in the off-line FAR'’s is speculated to have resulted because the simulated data, although it
included a smaller amount of data (60 hours versus 168 hours), was composed of a larger number of
incidents (75 versus 26 incidents). The smaller amount of data resulted in a smaller denominator in
computing the off-line FAR for the simulated versus the field data. While the larger number of incidents
resulted in more alarms as a result of the shockwaves that are generated by the incidents and thus a higher
numerator in computing the off-line FAR for the simulated versus field data. Consequently, the higher off-line
FAR for the simulated versus field data.

Based on the results presented in Table 9 it was concluded that the simulated data was reasonably
consistent with the field data in terms of incident detection logic. Consequently, the results that are
presented in Table 9 serve as a benchmark for the evaluation of other AID algorithms that may be evaluated
using the testbed that was compiled at Queen’s University.

VIl. CONCLUSIONS AND RECOMMENDATIONS

This paper describes how a testbed that is composed of field data and simulated data was compiled at
Queen’s University. The field data is composed of a total of 168 hours of 20-second data measurements
including a total of 26 incidents, while the simulated data is composed of 60 hours of 20-second detector
data including a total of 75 incidents.

The conclusions of the study are:

a. The application of the McMaster AID algorithm to simulated data generated by INTEGRATION
and observed field data resulted in a detection rate and an on-line false alarm rate within 2
percent.

b. On the basis of these results, it can be concluded that loop detector data generated from the
INTEGRATION model can be utilised to evaluate AID algorithms.

c. The AID testbed that was compiled at Queen’s University includes a variety of controlled incident
scenarios, namely: off-peak versus peak conditions, different incident severities, different
longitudinal locations relative to detector stations, different lane blockages, different incident
durations, and different locations relative to off- and on-ramps.

It is recommended that this testbed serve as a standard evaluation tool for the evaluation of AID algorithms.

REFERENCES
Busch F. (1991), Concise Encyclopedea of Traffic Transportation Systems, Pergamon Press, pp. 219-225.

Busch F. and M. Fellendorf (1986), “Automatic Incident Detection on Motorways,” Traffic Engineering and
Control, April, pp. 221-227.

Cook A.R. and D.E. Cleveland (1974), “The Detection of Freeway Capacity Reducing Incidents by Traffic
Stream Measurements,” Transportation Research Record 495, TRB, Washington D.C.

Gall A.l. and F.L. Hall (1989), “Distinguishing Between Incident Congestion and Recurrent Congestion: A
Proposed Logic,” Transportation Research Record 1232, TRB, National Research Council, Washington
D.C., pp. 1-8.



H. Rakha, B. Hellinga and M. Van Aerde Page 8

Hall F.L., Shi Y. and Atala G. (1993), “On-line Testing of the McMaster Incident Detection Algorithm Under
Recurrent Congestion,” Transportation Research Record 1394, pp. 1-7.

Hellinga B., Rakha H., and Van Aerde M. (1997), “ Assessing the Potential of Using Traffic Simulation Model
Results for Evaluating Automatic Incident Detection Algorithms,” Submitted to Transportation Research
Board (TRB), Washington D.C.

Levin M. and G.M. Krause (1979), “Incident Detection Algorithms, Part 1, Off-Line Evaluation,”
Transportation Research Record 722, TRB, National Research Council, Washington D.C., pp. 49-58.

Levin M., G.M. Krause, and J.A. Budrick (1979), “Incident Detection Algorithms, Part 2, On-Line Evaluation,”
Transportation Research Record 722, TRB, National Research Council, Washington D.C., pp. 58-64.

Robinson M.D. (1995), A model for Evaluating the Safety Implications of Advanced Traveler Information
Systems, M.Sc. Thesis, Queen’s University.

Stephanedes Y.J. and Chassiakos (1993), “Application of Filtering Techniques for Incident Detection,”
Journal of Transportation Engineering, Vol. 119, No. 1, January/February, pp. 13-26.

Stephanedes Y.J., Chassiakos A.P., and Micchalopoulos P.G. (1992), “Comparative Performance
Evaluation of Incident Detection Algorithms,” Transportation Research Record 1360, pp. 50-57.

Van Aerde, M., and Rakha, H., (1995), Multivariate Calibration of Single Regime Speed-Flow-Density
Relationships, VNIS/Pacific Rim Conference Proceedings, Seattle, WA., pp. 334-341, ISBN 0-7803-
2587-7, IEEE 95CH35776.

Van Aerde, M., MacKinnon, G., and Hellinga, B., (1991), The Generation of Synthetic O-D Demands from
Real-Time Vehicle Probe Data: Potential and Limitations, VNIS Conference Proceedings, Dearborn, Ml.,
Vol Il, pp. 891-900 [912836], ISBN 1-56091-191-3, IEEE 91CH3091-6.

ACKNOWLEDGEMENTS

The authors of the paper would like to acknowledge the financial and technical support of the Ontario
Ministry of Transportation (MTO). In particular, the authors would like to acknowledge the support of Phillip
Masters and David Tsui of the Advanced Traffic Management Section of MTO.

The authors would like to acknowledge the work done by Mark Baker and Mark Carter of Queen’s University
in the coding of the study section along Hwy 401. The assistance of John A. Stewart of the Royal Military
College (RMC) and Susan McMillan and Katrin Lepik of Queen’s University is also appreciated.



H. Rakha, B. Hellinga and M. Van Aerde

Page 9

Table 1: Incident summary for field data

Incident number (Seq.) Date Time Station ID
1 October 9, 1995 14:22:18 DW 0040 DWC
2 October 9, 1995 | 19:15:17 DW 0080 DEE
3 October 10, 1995 | 09:25:21 DW 0040 DWE
4 October 10, 1995 | 09:26:47 DE 0060 DWC
5 October 10, 1995 | 12:23:31 DE 0030 DWC
6 October 10, 1995 | 12:39:31 DE 0020 DWC
7 October 10, 1995 | 15:08:09 DW 0010 DWE
8 October 10, 1995 | 15:33:26 DE 0070 DWC
9 October 11, 1995 | 09:44:20 DE 0060 DWC
10 October 11, 1995 | 09:45:44 DE 0080 DWC
11 October 11, 1995 | 13:40:40 DE 0090 DEC
12 October 11, 1995 | 17:44:11 DW 0040 DWS
13 October 11, 1995 | 18:00:07 DE 0060 DWE
14 October 11, 1995 | 19:00:11 DW 0060 DEC
15 October 12, 1995 | 09:31:51 DW 0020 DWE
16 October 12,1995 | 09:54:00 DE 0080 DWE
17 October 12, 1995 | 09:59:38 DW 0020 DWT
18 October 12,1995 | 15:14:22 DW 0030 DEC
19 October 12, 1995 | 16:38:31 DW 0060 DEE
20 October 13,1995 | 09:45:05 DE 0070 DWE
21 October 13, 1995 | 17:14:55 DW 0030 DWE
22 October 13,1995 | 22:47:27 DW 0080 DEE
23 October 13, 1995 | 22:55:47 DW 0070 DEC
24 October 14, 1995 | 00:19:53 DW 0040 DEE
25 October 14, 1995 | 00:57:48 DW 0040 DEC
26 October 15, 1995 | 12:50:11 DE 0070 DEC

Table 2: Example illustration of loop detector file

Line #

Description

1

2
3
4

Detector output for day 1

20 16 10 1 540 112 30
20 16 10 2 720 120 35
20 16 10 3 1080 103 65

401DWOO010DES
401DWO0010DES
401DWO0010DES

Table 3: Description of fields in the loop detector file

Line# | Field | Description
1 1 File title (up to 40 characters)
2+ 1 Time (seconds) at end of interval [integer]
2 Detector station identification number [integer]
3 Detector station type
4 Lane number - lanes are numbered consequtively from 1 in the median lane, increasing to the
shoulder lane
5 Lane volume measured during previous polling interval (veh/h/lane)
6 Lane speed measured during previous polling interval (km/h)
7 Lane occupancy measured during the previous polling interval (percent)
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Table 4: Factors considered in experimental design

Factor Number Values

A. Level of Congestion 2 off-peak and peak conditions

B. Incident severity 2 1 and 2 lane blockage

C. Incident longitudinal location 5 50, 100, 200, 300, and 500 metres upstream detector station

D. Incident lateral location 3 median, centre, and shoulder

E. Incident duration 5 1, 5, 10, 20, and 30 minutes

D. Location geometry 5 upstream of on-ramp, downstream of on-ramp, upstream of off-ramp, downstream
of off-ramp, and basic section

Table 5: Experimental design for simulated data

Batch Factor Total
A B C D E F

A-1 2 2 uncontrolled shoulder 1 and 20 min uncontrolled 8
A-2 2 2 uncontrolled shoulder 5 and 10 min uncontrolled 8
A-3 2 2 uncontrolled shoulder 30 min uncontrolled 4
B peak 2 uncontrolled shoulder 5 min 5 10
C-1 peak 1lane 5 shoulder 5 min basic 5
C-2 peak 1lane 5 shoulder 1 min basic 5
C-3 off-peak 1 lane 5 shoulder 5 min basic 5
D-1 2 1lane uncontrolled shoulder 5 uncontrolled 10
D-2 2 1lane uncontrolled centre 5 uncontrolled 10
D-3 2 1lane uncontrolled median 5 uncontrolled 10

Total 5

where: uncontrolled means that the factor is not controlled and can take different values
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Table 6: Description of incidents in field dataset

Incident Detected by Detected by coded Incident description
algorithm in field algorithm
1 Yes Partial blockage
2 Partial blockage
3 Yes Yes Partial blockage
4 Partial blockage
5 Yes Yes Partial blockage
6 Partial blockage
7 Partial blockage
8 Yes Yes Partial blockage
9 Partial blockage
10 Partial blockage
11 Partial blockage
12 Yes Partial blockage
13 Yes Partial blockage
14 Yes Yes Partial blockage
15 Yes Partial blockage
16 Yes Partial blockage
17 Total blockage of transfer
lane
18 Partial blockage
19 Yes Yes Partial blockage
20 Yes Yes Partial blockage
21 Partial blockage
22 Yes Yes Partial blockage
23 Partial blockage
24 Yes Partial blockage
25 Partial blockage
26 Yes Partial blockage

Table 7: Comparison of field and coded McMaster algorithm results for field data

component of testbed

Parameter Field Coded McMaster
algorithm

Total number of incidents A 26 26

Total number of incidents detected B 11 10

Total number of false alarms C 255 287

Detection rate (B/A) D 42.3 38.5%

Total number of tests (1 per 20 sec) E 6,259,680 6,259,680"

Off-line false alarm rate (C/E x 100%) F 0.00407 % 0.00458 %

On-line false alarm rate (100% x C/(B+C)) G 95.9 % 96.6 %

' 7 days x 24 hours/day x 60 minutes/hour x 3 tests/minute x 207 detectors = 6,259,680
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Table 8: Description of incidents in synthetic dataset

Incident # Direction Facility Start Time Duration Severity (lanes Lanes in Batch Detected?
(hours) (minutes) blocked) Section

1 EB C 5:30 AM 20 2 4 Batch a-1

2 EB C 7:30 AM 20 1 5 Batch a-1 Yes
3 EB E 5:45 AM 1 2 3 Batch a-1

4 WB E 5:45 AM 20 1 3 Batch a-1

5 WB C 6:00 AM 1 1 4 Batch a-1

6 wB E 8:15 AM 1 1 3 Batch a-1

7 wB S 8:30 AM 20 2 5 Batch a-1

8 WB C 8:00 AM 1 2 4 Batch a-1

9 EB C 5:30 AM 10 2 4 Batch a-2

10 EB C 7:30 AM 10 1 5 Batch a-2 Yes
11 EB E 5:45 AM 5 2 3 Batch a-2

12 wB E 5:45 AM 10 1 3 Batch a-2

13 wB C 6:00 AM 5 1 4 Batch a-2

14 WB E 8:15 AM 5 1 3 Batch a-2

15 WB S 8:30 AM 10 2 5 Batch a-2

16 wB C 8:00 AM 5 2 4 Batch a-2

17 EB C 5:30 AM 30 1 4 Batch a-3

18 EB C 5:45 AM 30 2 3 Batch a-3 Yes
19 EB E 8:30 AM 30 2 5 Batch a-3

20 WB E 7:30 AM 30 1 4 Batch a-3

21 EB E 7:00 AM 5 1 3 Batch b Yes
22 EB E 8:00 AM 5 1 3 Batch b

23 WB E 7:30 AM 5 2 3 Batch b Yes
24 wB C 8:15 AM 5 1 3 Batch b

25 EB C 7:00 AM 5 1 3 Batch b

26 EB E 8:00 AM 5 2 3 Batch b Yes
27 WB C 7:15 AM 5 2 3 Batch b Yes
28 EB E 7:30 AM 5 1 3 Batch b Yes
29 wB E 7:00 AM 5 2 3 Batch b Yes
30 WB C 7:45 AM 5 1 3 Batch b

31 EB E 7:00 AM 5 1 3 Batch c-1 Yes
32 WB E 7:00 AM 5 1 3 Batch c-1

33 EB E 8:00 AM 5 1 3 Batch c-1

34 wB E 7:45 AM 5 1 3 Batch c-1 Yes
35 EB E 8:30 AM 5 1 3 Batch c-1 Yes
36 EB E 7:00 AM 1 1 3 Batch c-2

37 wB E 7:00 AM 1 1 3 Batch c-2

38 EB E 8:00 AM 1 1 3 Batch c-2

39 WB E 7:45 AM 1 1 3 Batch c-2

40 EB E 8:30 AM 1 1 3 Batch c-2

41 EB E 6:00 AM 5 1 3 Batch c-3

42 wB E 6:00 AM 5 1 3 Batch c-3

43 EB E 5:45 AM 5 1 3 Batch c-3

44 WB E 5:30 AM 5 1 3 Batch c-3

45 EB E 10:30 AM 5 1 3 Batch c-3 Yes
46 EB C 6:30 AM 10 1 3 Batch d-1 Yes
47 EB E 6:15 AM 5 1 3 Batch d-1

48 EB C 10:00 AM 30 1 3 Batch d-1 Yes
49 WB E 6:09 AM 20 1 3 Batch d-1

50 WB C 10:19 AM 1 1 3 Batch d-1

51 WB E 8:15 AM 10 1 3 Batch d-1 Yes
52 wB C 7:39 AM 10 1 3 Batch d-1

53 WB C 8:00 AM 1 1 3 Batch d-1

54 EB E 8:00 AM 30 1 3 Batch d-1 Yes
55 EB E 7:39 AM 20 1 3 Batch d-1 Yes
56 EB C 6:30 AM 10 1 3 Batch d-2 Yes
57 EB E 6:15 AM 5 1 3 Batch d-2

58 EB C 10:00 AM 30 1 3 Batch d-2 Yes
59 wB E 6:09 AM 20 1 3 Batch d-2

60 WB C 10:19 AM 1 1 3 Batch d-2

61 WB E 8:15 AM 10 1 3 Batch d-2 Yes
62 wB C 7:39 AM 10 1 3 Batch d-2

63 wB o] 8:00 AM 1 1 3 Batch d-2

64 EB E 8:00 AM 30 1 3 Batch d-2 Yes
65 EB E 7:39 AM 20 1 3 Batch d-2 Yes
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66
67
68
69
70
71
72
73
74
75

EB
EB
EB
wB
wB
WwB
wB
wB
EB
EB

C 6:30 AM 10 1 3 Batch d-3 Yes
E 6:15 AM 5 1 3 Batch d-3
C 10:00 AM 30 1 3 Batch d-3 Yes
E 6:09 AM 20 1 3 Batch d-3
C 10:19 AM 1 1 3 Batch d-3
E 8:15 AM 10 1 3 Batch d-3 Yes
C 7:39 AM 10 1 3 Batch d-3
C 8:00 AM 1 1 3 Batch d-3
E 8:00 AM 30 1 3 Batch d-3 Yes
E 7:39 AM 20 1 3 Batch d-3 Yes

Table 9: Comparison of McMaster algorithm results for field and synthetic data

Parameter Field Data Simulated Data
Total number of incidents A 26 75
Total number of incidents detected B 10 28
Total number of false alarms C 287 473
Detection rate (B/A) D 38.5% 37.3%
Total number of tests (1 per 20 sec) E 6,259,680 2,235,600°
Off-line false alarm rate (C/E x 100%) F 0.00458 % 0.0212 %
On-line false alarm rate (100% x C/(B+C)) G 96.6 % 94.4 %

1 7 days x 24 hours/day x 60 minutes/hour x 3 tests/minute x 207 detectors =

6,259,680

210 runs x 6 hours/run x 60 minutes/hour x 3 tests/minute x 207 detectors =

2,235,600
Time l:l = Core area

l:l + %% = Total area

y\icle trajectory
ty

/ incident
/
4 AN

/ shock wave

S, Sy Space

Figure 1: Representation of the impact of an incident on vehicle space-time trajectories

Keele St
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Figure 2: Study network configuration (Hwy 401, Toronto, Canada)
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Figure 3: Typical spatial and temporal variation in occupancy on study network along
eastbound expressway
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Figure 4: Typical spatial and temporal variation in occupancy on study network along
eastbound collector
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Figure 5: Typical spatial and temporal variation in occupancy on study network along
westbound expressway
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Time Space Diagram of Occupancy (%)

11 October 95, West Bound Collector
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Figure 6: Typical spatial and temporal variation in occupancy on study network along
westbound collector

APPENDIX (A)

TABLE A.1: INCIDENT FILE FOR BATCH A-1

hwy 401 - 8 interchange network: Batch Al

-8 u/s detector

1 160 0.120 0.220 1800 3000 0011 Inc. A - 5:30-5:50 2 lanes 39

2 167 0.225 0.325 9000 10200 00001 Inc. B - 7:30-7:50 1 lane 71

3 344 0.240 0.340 2700 2760 011 Inc. C - 5:45-5:46 2 lanes 149

4 448 0.260 0.360 2700 3900 001 Inc. D - 5:45-6:05 1 lane 107

5 280 0.205 0.305 3600 3660 0001 Inc. E - 6:00-6:01 1 lane 83

6 458 0.200 0.300 11700 11760 001 Inc. F - 8:15-8:16 1 lane 69

7 305 0.100 0.200 12600 13800 00011 Inc. G - 8:30-8:50 2 lanes 4

8 286 0.100 0.200 10800 10860 0011 Inc. H - 8:00-8:01 2 lanes 54
TABLE A.2: INCIDENT FILE FOR BATCH A-2

hwy 401 - 8 interchange network: Batch A2

-8

1 160 0.120 0.220 1800 2400 0011 Inc. A - 5:30-5:40 2 lanes 39

2 167 0.225 0.325 9000 9600 00001 Inc. B - 7:30-7:40 1 lane 71

3 344 0.240 0.340 2700 3000 011 Inc. C - 5:45-5:50 2 lanes 149

4 448 0.260 0.360 2700 3300 001 Inc. D - 5:45-5:55 1 lane 107

5 280 0.205 0.305 3600 3900 0001 Inc. E - 6:00-6:05 1 lane 83

6 458 0.200 0.300 11700 12000 001 Inc. F - 8:15-8:20 1 lane 69

7 305 0.100 0.200 12600 13200 00011 Inc. G - 8:30-8:40 2 lanes 4

8 286 0.100 0.200 10800 11100 0011 Inc. H - 8:00-8:05 2 lanes 54
TABLE A.3: INCIDENT FILE FOR BATCH A-3

hwy 401 - 8 interchange network: Batch A3

-4

1 160 0.120 0.220 1800 3600 0001 Incident A - 5:30-6:00 39

2 344 0.240 0.340 2700 4500 011 Incident C - 5:45-6:15 149

3 305 0.100 0.200 12600 14400 00011 Incident G - 8:30-9:00 4

4 455 0.200 0.300 9000 10800 0001 Incident 1 - 7:30-8:00 84
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TABLE A.4: INCIDENT FILE FOR BATCH B

highway 401 - June/96 Batch B

-10

QOWO~NOUITAWNE

Iy

345
317
446
284
165
328
279
334
300
292

0.374 O
0.088 O
0.1615 O.
0.1275 O.
0.2245 O.
0.271 O
0.159 O
0.28
0.371 O
0.119 O

.424
.138
2115
1775
2745
.321
.209
0.33
.421
.169

7200
10800
9000
11700
7200
10800
8100
9000
7200
9900

7500
11100
9300
12000
7500
11100
8400
9300
7500
10200

001
001
011
001
001
011
011
001
011
001

155
17
113
68
53
74
83
104
13
41

TABLE A.5: INCIDENT FILE FOR BATCH C-1

highway 401 - 8 interchange network : Batch C-1
-5
1 344 0.375 0.425 7200 7500 001 7:00:00 200m 149
2 448 0.48 0.53 7200 7500 001 7:00:00 300m 107
3 333 0.515 0.565 10800 11100 001 8:00:00 500m 93
4 457 0.33 0.38 9900 10200 001 7:45:00 100m 69
5 321 0.12 0.17 12600 12900 001 8:30:00 50m 31
TABLE A.6: INCIDENT FILE FOR BATCH C-2
highway 401 - 8 interchange network : Batch C-2
-5
1 344 0.375 0.425 7200 7260 001 7:00:00 200m 149
2 448 0.48 0.53 7200 7260 001 7:00:00 300m 107
3 333 0.515 0.565 10800 10860 001 8:00:00 500m 93
4 457 0.33 0.38 9900 9960 001 7:45:00 100m 69
5 321 0.12 0.17 12600 12660 001 8:30:00 50m 31
TABLE A.7: INCIDENT FILE FOR BATCH C-3
highway 401 - 8 interchange network : Batch C-3
-5
1 344 0.375 0.425 3600 3900 001 6:00:00 200m 149
2 448 0.48 0.53 3600 3900 001 6:00:00 300m 107
3 333 0.515 0.565 2700 3000 001 5:45:00 500m 93
4 457 0.33 0.38 1800 2100 001 5:30:00 100m 69
5 321 0.12 0.17 19800 20100 001 10:30:00 50m 31
TABLE A.8: INCIDENT FILE FOR BATCH D-1
hwy 401 - 8 interchange network: Batch D-1
-10
1 158 0.025 0.125 5400 6000 001 Inc. A - 6:30- 6:40 26
2 322 0.400 0.500 4500 4800 001 Inc. B - 6:15- 6:20 38
3 180 0.250 0.350 18000 19800 001 Inc. C -10:00-10:30 105
4 458 0.200 0.300 4200 5400 001 Inc. D - 6:10- 6:30 69
5 444 0.150 0.250 19200 19260 001 Inc. E -10:20-10:21 136
6 448 0.255 0.355 11700 12300 001 Inc. F - 8:15- 8:25 107
7 282 0.100 0.200 9600 10200 001 Inc. G - 7:40- 7:50 76
8 297 0.060 0.160 10800 10860 001 Inc. H - 8:00- 8:01 24
9 328 0.250 0.350 10800 12600 001 Inc. 1 - 8:00- 8:30 74
10 438 0.080 0.180 9600 10800 001 Inc. J - 7:40- 8:00 148
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TABLE A.9: INCIDENT FILE FOR BATCH D-2

hwy 401 - 8 interchange network: Batch D-2

-10

1 158 0.025 0.125 5400 6000 010 Inc. A - 6:30- 6:40 26
2 322 0.400 0.500 4500 4800 010 Inc. B - 6:15- 6:20 38
3 180 0.250 0.350 18000 19800 010 Inc. C -10:00-10:30 105
4 458 0.200 0.300 4200 5400 010 Inc. D - 6:10- 6:30 69
5 444 0.150 0.250 19200 19260 010 Inc. E -10:20-10:21 136
6 448 0.255 0.355 11700 12300 010 Inc. F - 8:15- 8:25 107
7 282 0.100 0.200 9600 10200 010 Inc. G - 7:40- 7:50 76
8 297 0.060 0.160 10800 10860 010 Inc. H - 8:00- 8:01 24
9 328 0.250 0.350 10800 12600 010 Inc. 1 - 8:00- 8:30 74
10 438 0.080 0.180 9600 10800 010 Inc. J - 7:40- 8:00 148

TABLE A.10: INCIDENT FILE FOR BATCH D-3

hwy 401 - 8 interchange network: Batch D-3

-10

1 158 0.025 0.125 5400 6000 100 Inc. A - 6:30- 6:40 26
2 322 0.400 0.500 4500 4800 100 Inc. B - 6:15- 6:20 38
3 180 0.250 0.350 18000 19800 100 Inc. C -10:00-10:30 105
4 458 0.200 0.300 4200 5400 100 Inc. D - 6:10- 6:30 69
5 444 0.150 0.250 19200 19260 100 Inc. E -10:20-10:21 136
6 448 0.255 0.355 11700 12300 100 Inc. F - 8:15- 8:25 107
7 282 0.100 0.200 9600 10200 100 Inc. G - 7:40- 7:50 76
8 297 0.060 0.160 10800 10860 100 Inc. H - 8:00- 8:01 24
9 328 0.250 0.350 10800 12600 100 Inc. 1 - 8:00- 8:30 74
10 438 0.080 0.180 9600 10800 100 Inc. J - 7:40- 8:00 148
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